Two components of use-dependent block of Na+ current by disopyramide and lidocaine in guinea pig ventricular myocytes.

نویسندگان

  • A Sunami
  • Z Fan
  • J Nitta
  • M Hiraoka
چکیده

We studied the kinetics of the use-dependent block of the Na+ current (INa) by disopyramide and lidocaine. INa was recorded from isolated guinea pig ventricular myocytes by using the whole-cell patch-clamp technique. The use-dependent block of INa by disopyramide with 20- and 200-msec depolarizing pulses developed in two exponential functions. The degree of the use-dependent block and the amplitude of the fast (Af) and slow (As) components with the short (20-msec) pulse protocol were comparable to those with the long (200-msec) pulse protocol. When pH was raised from 7.3 to 8.0, disopyramide increased Af without a change in As. At pH 6.5, INa block developed with a single exponential function revealing only the slow component. The fast and slow components of INa block by disopyramide could be explained by binding of the uncharged and charged forms, respectively, to the activated state of the channel. Development of INa block by lidocaine also was expressed by two exponentials at all pulse durations (5-200 msec). As pulse durations were prolonged or holding potentials were depolarized, the degree of the use-dependent block and Af increased. When pH was lowered to 6.5, the short pulse produced only the slow component, whereas the long pulse caused two exponentials with decreased Af and increased As. Internal application of QX-314, a permanently charged lidocaine analogue, produced a single exponential block of INa with a very slow onset rate.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for two components of sodium channel block by lidocaine in isolated cardiac myocytes.

The effects of lidocaine on sodium current in cardiac myocytes isolated from cat and guinea pig were investigated using the whole-cell variation of the patch-clamp technique. Lidocaine (43-200 microM) reduced sodium current during repetitive depolarizing pulses in a use-dependent manner. To clarify the nature of the use-dependent block, we characterized the time course of block development usin...

متن کامل

Beta-adrenergic stimulation does not activate Na+/Ca2+ exchange current in guinea pig, mouse, and rat ventricular myocytes.

The effect of beta-adrenergic stimulation on cardiac Na(+)/Ca(2+) exchange has been controversial. To clarify the effect, we measured Na(+)/Ca(2+) exchange current (I(NCX)) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When I(NCX) was defined as a 5 mM Ni(2+)-sensitive current in guinea pig ventricular myocytes, 1 microM isoproterenol apparently augmented I(NCX) by approximat...

متن کامل

Na channel regulation by Ca/calmodulin and Ca/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Na channel regulation by Ca/calmodu...

متن کامل

Density and kinetics of I(Kr) and I(Ks) in guinea pig and rabbit ventricular myocytes explain different efficacy of I(Ks) blockade at high heart rate in guinea pig and rabbit: implications for arrhythmogenesis in humans.

BACKGROUND Class III antiarrhythmic agents commonly exhibit reverse frequency-dependent prolongation of the action potential duration (APD). This is undesirable because of the danger of bradycardia-related arrhythmias and the limited protection against ventricular tachyarrhythmias. The effects of blockade of separate components of delayed rectifier K(+) current (I(K)) may help to develop agents...

متن کامل

Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species.

Explanations for arrhythmia mechanisms at the cellular level are usually based on experiments in nonhuman myocytes. However, subtle electrophysiological differences between species may lead to different rhythmic or arrhythmic cellular behaviors and drug response given the nonlinear and highly interactive cellular system. Using detailed and quantitatively accurate mathematical models for human, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 68 3  شماره 

صفحات  -

تاریخ انتشار 1991